Why multigrid can be effective in optimization

Michael Lewis

College of William & Mary

ICASE, NASA Langley Research Center

Joint work with Stephen G. Nash, George Mason University

This work was supported by the National Aeronautics and Space Administration under NASA Contract NAS1-97046.

The problem of interest

The nonlinear program (NLP):

$$\begin{aligned} & \underset{a}{\text{minimize}} & & F(a) = f(a, u(a)) \\ & \text{subject to} & & C(a) = C(a, u(a)) \geq 0 \end{aligned}$$

where S(a, u(a) = 0 is the governing PDE.

Terminology:

design variables: $a \in X$, finite- or ∞ -dimensional

state variables: $u \in U$, ∞ -dimensional

The computational cost of optimization is determined by the discretization of the governing differential equations.

A finer discretization means greater accuracy, but more work.

Another type of NLP related to discretized problems

The NLP:

$$\label{eq:fu} \begin{aligned} & \underset{u}{\text{minimize}} & & f(u) \\ & \text{subject to} & & c(u) \geq 0 \end{aligned}$$

Example. Minimize the area of a surface (graph) with prescribed boundary.

$$\begin{array}{ll} \underset{u}{\text{minimize}} & \int_{\Omega} (1+\parallel \nabla u \parallel^2)^{1/2} \; dx \\ \text{subject to} & u=\phi & \text{on } \partial \Omega \end{array}$$

The stationarity condition is the minimal surface equation.

This talk

- 1. The class of nonlinear programs of interest
- 2. A multigrid method
- 3. Some model problems and numerical results
- 4. Why multigrid might work:
 - The nature of the reduced Hessian
- 5. Interaction with truncated conjugate gradients

We assume here that the design variable a is a discretized quantity a_h .

Optimization of systems governed by differential equations

General theme: The governing PDE and the NLP interact in many interesting ways, both analytically and computationally.

This talk: An optimization problem may be better suited to a multigrid approach than its governing p.d.e.

- MG/Opt
 - Model problems for the multigrid optimization of systems governed by differential equations, RML and S. G. Nash, submitted to SIAM J. on Scientific Computing.

 A Multigrid Approach to the Optimization of Systems Governed by Differential Equations, RML and S. G. Nash, AIAA paper 2000-4890.
- For a related approach, see
 Optimization with variable-fidelity models applied to wing design, N. M. Alexandrov,
 RML, C. R. Gumbert, L. L. Green, P. A. Newman, J. of Aircraft, Nov-Dec 2001.

MG/Opt overview

The MG/Opt multigrid approach to the nonlinear program:

- Multigrid: recursively use coarse grid problems to generate search directions for finer grid problems
- Use a line search on fine grid
- Convergence can be guaranteed
- Inspired by multigrid for elliptic p.d.e. and by globalization techniques in nonlinear programming
- Applicable when S(a,u)=0 is not especially amenable to multigrid (e.g., hyperbolic p.d.e.)
- Optimization problem better suited to multigrid than underlying differential equation

Multigrid for linear elliptic p.d.e.

For a linear system Ax = b

- If on coarsest grid, solve and return
- ullet Apply k_1 iterations of an iterative method
- ullet Form residual r=b-Ax
- ullet Solve (recursively) coarse-grid version of Ae=r, and update solution to fine grid
- Set $x \leftarrow x + e$
- ullet Apply k_2 iterations of an iterative method

Properties of linear multigrid

- Storage: about 2 times the storage of the fine-grid problem $(N+N/2+\ldots)$
- Computation: 1 MG iteration = about 4 fine-grid iterations
- Convergence: on "appropriate" problems, no. of MG iterations is independent of the fine-grid resolution
- Linear convergence rate

Multigrid optimization (MG/Opt) algorithm

Originally developed for unconstrained variational problems

$$\min_{u} \inf f_h(u)$$

- Here, the p.d.e. $S_h(a, u) = 0$ is solved for $u_h(a)$ (given a)
- ullet In many cases, no. of design variables a is fixed
 - semi-coarsening in states u_h only

Here we assume a is a discretized quantity a_h .

Motivated by full approximation scheme applied to optimality conditions:

$$\nabla_a f_h(a, u_h(a)) = 0$$

Alternatively, one can motivate the algorithm via NLP considerations

MG/Opt algorithm

Notation

- h: fine grid mesh, H: coarse grid mesh
- I_h^H : downdate, I_H^h : update, of a
- u_h : fine-grid vector, u_H : coarse-grid vector
- F_h : fine-grid objective function

$$F_h(a_h) = f(a_h, u_h(a_h))$$

- F_H : coarse-grid objective function
- $g_h(a)$: fine-grid gradient
- $g_H(a)$: coarse-grid gradient
- $g_1 = g(a_1, u_1(a_1))$, etc.

MG/Opt algorithm

- 1. If coarsest grid, solve minimize $f_h(a, u_h(a))$; else:
- 2. partially minimize $F_h(a)$ to get a_1
- 3. set $\bar{a}_1 = I_h^H a_1$
- 4. compute $v = \bar{g}_1 I_h^H g_1$
- 5. recursively minimize $F_H(a) v^T a$ (with initial guess: \bar{a}_1 , result: \bar{a}_2) subject to bound constraints on the solution (used to guarantee convergence)
- 6. compute $e_2 = I_H^h(\bar{a}_2 \bar{a}_1)$
- 7. line search: $a_2 \leftarrow a_1 + \alpha e_2$
- 8. partially minimize $F_h(a)$ to get a_3

User requirements

- Subroutine to solve S(a, u) = 0 for u given a
- Subroutine to evaluate $F_h(a)$ and $\nabla_a F_h(a)$ for any grid h
- ullet Subroutines to implement downdate I_H^h and update I_h^H operators
 - Should satisfy $I_H^h = \operatorname{const} \times (I_h^H)^T$ (standard)

$\nabla^2 F(a)$ as a reduced Hessian

Formally, $abla^2 F(a)$ is the reduced Hessian associated with the formulation

$$\begin{array}{ll} \underset{(a,u)}{\text{minimize}} & f(a,u) \\ \text{subject to} & S(a,u) = 0 \end{array}$$

Let W be the following basis for the nullspace of the linearized constraints:

$$[S_a \quad S_u]W = [S_a \quad S_u] \begin{pmatrix} I \\ -S_u^{-1}S_a \end{pmatrix} = 0.$$

Define the Lagrangian $L(a, u; \lambda) = f(a, u) + \langle \lambda, S(a, u) \rangle$.

Then

$$abla^2 F(a) = W^T \left(
abla^2_{(a,u)} L((a,u(a);\lambda) \right) W.$$

$\nabla^2 F(a)$ in detail

Let

$$\nabla_{(a,u)}^{2} L((a,u;\lambda) = \nabla_{(a,u)}^{2} f(a,u) + \nabla_{(a,u)}^{2} S(a,u)\lambda = \begin{pmatrix} L_{aa} & L_{au} \\ L_{ua} & L_{uu} \end{pmatrix}.$$

Then

$$\nabla^2 F = S_a^T S_u^{-T} L_{uu} S_u^{-1} S_a + L_{au} S_u^{-1} S_a + S_a^T S_u^{-T} L_{ua} + L_{aa}.$$

Model Problem: Dirichlet to Neumann map

Minimize

$$\int_0^\pi \left[\frac{\partial u}{\partial n}(x_1,0)-\phi(x_1)\right]^2 dx_1$$
 where $S=\{\ (x_1,x_2)\ |\ 0\leq x_1\leq \pi,\ 0\leq x_2\leq 1\ \}$

Governing BVP:

$$\Delta u = 0$$
 on the square S ,

$$u\Big|_{\Gamma}=a(x_1), \quad \Gamma= ext{lower edge of }S$$
 $u\Big|_{\partial S\setminus \Gamma}=0$

Uniform grids (1-d in a and 2-d in u): 128, 64, 32, 16

Model problem: advection

Governing equation: linear advection (hyperbolic):

$$u_t + u_x = 0, \quad 0 \le t \le T$$

$$u(x, 0) = a(x)$$

Objective: minimize

$$F(a) = \frac{1}{2} \int_0^T \int |u(x,t) - \phi(x,t)|^2 + |\partial_x u(x,t) - \partial_x \phi(x,t)|^2 dx dt.$$

The continuous Hessian

The Hessian is given by

$$\nabla^2 F \cdot v = -v''(x) + v(x).$$

This looks ideal for multigrid! **BUT...**

$$\nabla^2 F_h = S_{a,h}^T S_{u,h}^{-T} L_{uu,h} S_{u,h}^{-1} S_{a,h} + S_{a,h}^T S_{u,h}^{-T} L_{ua,h} + L_{au,h} S_{u,h}^{-1} S_{a,h} + L_{aa,h},$$

so it's **NOT** the case that

$$\nabla^2 F_H = I_H^h \; \nabla^2 F_h \; I_h^H.$$

The situation is more complicated than multigrid applied to equations.

Still, for many problems, we can show that the high-frequency asymptotics are the same for $\nabla^2 F_H$ and $I_H^h \nabla^2 F_h I_h^H$.

For the model problems, we can compute $abla^2 F_h$ directly.

The discrete Hessian

Forward-time, backwards-space discretization:

$$\frac{u_m^{n+1} - u_m^n}{k} + \frac{u_m^n - u_{m-1}^n}{h} = 0; \quad k = \Delta t, \quad h = \Delta x$$

The discrete Hessian is most simply described in terms of the spatial Fourier transform. If $\Delta t = \Delta x$ (the stability limit), then

$$(\widehat{\nabla^2 F_h} \cdot v)(\omega) = T \left(1 + \frac{4\sin^2 h \frac{\omega}{2}}{h^2} \right) \ \hat{v}(\omega) \approx T(1 + \omega^2) \hat{v}(\omega).$$

The discrete Hessian looks like an elliptic operator.

Now the analysis begins to resemble classical multigrid.

Uniform grids (1-d in a and 2-d in u): 1024, 512, 256, 128, 64, 32

Truncated conjugate gradients

In t.c.g., we compute steps by applying c.g. to

minimize
$$\frac{1}{2}\langle s, \nabla^2 F s \rangle + \langle \nabla F, s \rangle$$
 subject to $\parallel s \parallel \leq \delta$.

We can use the way $\nabla^2 F$ affects low and high frequencies matters to make this more efficient.

Why does c.g. stall?

Consider unpreconditioned c.g. applied to Poisson's equation, $\Delta u = q$, or, equivalently,

minimize
$$\frac{1}{2}\int \nabla u\cdot \nabla u-qu$$
.

At iteration k, we've minimized over the Krylov subspace

MG/Opt

Generality?

"span
$$\{ \ q, \ \Delta q, \ \Delta^2 q, \ \Delta^3 q, \ \dots, \ \Delta^k q \ \}$$
"

But the Krylov vectors represent increasingly oscillatory functions, while the solution is smoother than q because Δ is elliptic!

In the discretized problem, c.g. quickly minimizes the quadratic over the span of functions that are increasingly oscillatory *relative to the level of discretization*.

Multigrid switches to coarser levels of discretization to take advantage of this feature.

Interaction of c.g. and length-scale effects

For a fixed h, the discrete Hessian,

$$abla^2 F_h(\omega) = T \left(1 + \frac{4\sin^2 h \frac{\omega}{2}}{h^2} \right) \approx 1 + \omega^2,$$

amplifies the upper range of frequencies,

$$|\omega| \ge \frac{\pi}{2h},$$

more than the lower range,

$$|\omega| \le \frac{\pi}{2h}$$
.

As in standard MG, in MG/Opt we switch to coarser grids $(h \leftarrow H)$ and apply t.c.g. to knock out the part of the solution that corresponds to the high-frequencies at that level of discretization.

V-cycles

We still need the V-cycle structure of standard MG—we need to do a few iterations of t.c.g. on finer grids from time to time.

The reasons are similar to those in standard multigrid.

The fine-to-coarse grid operators I_H^h are not exact low-pass filters. Since we do not solve the problem exactly on the finer grids, aliasing may occur when we assemble a coarser grid problem.

Conversely, errors can arise when the coarse-grid solutions are injected into the finer grids.

Is the ellipticity a fluke? Is it expected?

Or is it Egorov's theorem?

Recall the structure of the (reduced) Hessian:

$$\nabla^2 F = S_a^T S_u^{-T} L_{uu} S_u^{-1} S_a + S_a^T S_u^{-T} L_{ua} + L_{au} S_u^{-1} S_a + L_{aa},$$

where
$$L(a, u) = f(a, u) + \langle \lambda, S(a, u) \rangle$$
.

In this problems (and many realistic problems) we have

$$\nabla^2 F = S_a^T S_u^{-T} L_{uu} S_u^{-1} S_a.$$

The linearized solution operator S_u^{-1} enters via conjugation.

The Hessian frequently turns out to be an elliptic ΨDO , and there are only limited frequency interactions.

Fourier analysis is less suitable for the more general setting.

Model Problem: Dirichlet to Neumann map (again)

Minimize

$$\int_0^\pi \left[\frac{\partial u}{\partial n}(x_1,0)-\phi(x_1)\right]^2 dx_1$$
 where $S=\{\ (x_1,x_2)\ |\ 0\leq x_1\leq \pi,\ 0\leq x_2\leq 1\ \}$

Governing BVP:

$$\Delta u = 0$$
 on the square S , $u\Big|_{\Gamma} = a(x_1), \quad \Gamma = ext{lower edge of } S$

The analytical Hessian

lf

$$v = \sum_{k=1}^{\infty} v_k \sin kx_1,$$

then

$$\nabla^2 F(a) \cdot v = \sum_{k=1}^{\infty} (k^2 \coth^2 k) \ v_k \sin kx_1 \approx -\frac{d^2 v}{dx_1^2},$$

and the Hessian is an elliptic operator.

We would expect multigrid to do well (and CG to do poorly).

The discrete Hessian

Standard five-point finite-difference scheme:

$$\frac{-u_{m+1,n} + 2u_{m,n} - u_{m-1,n}}{h^2} + \frac{-u_{m,n+1} + 2u_{m,n} - u_{m,n-1}}{h^2} = 0.$$

Grid size h in both the x_1 and x_2 directions with $h = \pi/N$.

lf

$$v = \sum_{k=1}^{N} v_k \sin kmh,$$

then

$$(Hv)_m = \sum_{k=1}^N \sigma_k^2 v_k \sin kmh$$

where σ_k^2 still grows roughly like k^2 .

Uniform grids (1-d in a and 2-d in u): 128, 64, 32, 16

Summary

- Multigrid is applicable to optimization of systems governed by differential equation constraints
- Can be successful even if the underlying p.d.e. are not elliptic
- Approach separates model, discretization, and optimization
- Structural features of the reduced Hessian lead us to believe multigrid will be widely applicable

Interpreting the reduced Hessian

The identity

$$\nabla^2 F(a) = W^T \left(\nabla^2_{(a,u)} L((a, u(a); \lambda)) \right) W.$$

means

$$\nabla^2 F(a)[\eta_1, \eta_2] = \nabla^2_{(a,u)} L((a, u(a); \lambda)[W\eta_1, W\eta_2].$$

Back to the reduced Hessian

Successive Krylov vectors for the advection problem

Plot of the magnitudes of the FFTs

Back to the advection Hessian

The discrete Hessian for the Dirichlet to Neumann map

 σ_k^2 versus wavenumber for h=0.01

Back to the Dirichlet to Neumann map